Regular Expressions: Formal Definition

We construct REs from primitive constituents (basic elements) by repeatedly applying certain recursive rules as given below. (In the definition)

Definition : Let S be an alphabet. The regular expressions are defined recursively as follows.

Basis :

i) [image:]is a RE

ii) [image:]is a RE

iii) [image:], a is RE.

These are called primitive regular expression i.e. Primitive Constituents

Recursive Step :

If [image:]and [image:]are REs over, then so are

i) [image:]

ii) [image:]

iii) [image:]

iv) [image:]

Closure : r is RE over only if it can be obtained from the basis elements (Primitive REs) by a finite no of applications of the recursive step (given in 2).

Example : Let [image:]= { 0,1,2 }. Then (0+21)*(1+ F) is a RE, because we can construct this expression by applying the above rules as given in the following step.

	Steps
	RE Constructed
	Rule Used

	1
	1
	Rule 1(iii)

	2
	
	Rule 1(i)

	3
	1+
	Rule 2(i) & Results of Step 1, 2

	
	
	

[image:][image:]
UNIT-2

Theory of Computation
NBKRIST
DEPT OF CSE
	[bookmark: page42][image:]4
	(1+)
	Rule 2(iv) & Step 3

	
	
	

	5
	2
	1(iii)

	6
	1
	1(iii)

	7
	21
	2(ii), 5, 6

	8
	0
	1(iii)

	9
	0+21
	2(i), 7, 8

	10
	(0+21)
	2(iv), 9

	11
	(0+21)*
	2(iii), 10

	12
	(0+21)*
	2(ii), 4, 11

Language described by REs : Each describes a language (or a language is associated with every RE). We will see later that REs are used to attribute regular languages.

Notation : If r is a RE over some alphabet then L(r) is the language associate with r . We can define the language L(r) associated with (or described by) a REs as follows.

1. [image:]is the RE describing the empty language i.e. L([image:]) = [image:].

2. [image:]is a RE describing the language {[image:]} i.e. L([image:]) = {[image:]} .

3. [image:], a is a RE denoting the language {a} i.e . L(a) = {a} .

4. If [image:]and [image:]are REs denoting language L([image:]) and L([image:]) respectively, then

i) [image:]is a regular expression denoting the language L([image:]) = L([image:]) ∪ L([image:])

ii) [image:]is a regular expression denoting the language L([image:])=L([image:]) L([image:])

iii) [image:]is a regular expression denoting the language [image:]

iv) ([image:]) is a regular expression denoting the language L(([image:])) = L([image:])

Example : Consider the RE (0*(0+1)). Thus the language denoted by the RE is

L(0*(0+1)) = L(0*) L(0+1)by 4(ii)

· L(0)*L(0) ∪ L(1)

· {[image:] , 0,00,000,........} {0} [image:]{1}

· {[image:] , 0,00,000,........} {0,1}

· {0, 00, 000, 0000,..........,1, 01, 001, 0001,...............}

Precedence Rule

[bookmark: page43]Consider the RE ab + c. The language described by the RE can be thought of either L(a)L(b+c) or

L(ab)[image:]L(c) as provided by the rules (of languages described by REs) given already. But these two represents two different languages lending to ambiguity. To remove this ambiguity we can either

1) Use fully parenthesized expression- (cumbersome) or

2) Use a set of precedence rules to evaluate the options of REs in some order. Like other algebras mod in mathematics.

For REs, the order of precedence for the operators is as follows:

i) The star operator precedes concatenation and concatenation precedes union (+) operator.

ii) It is also important to note that concatenation & union (+) operators are associative and union operation is commutative.

Using these precedence rule, we find that the RE ab+c represents the language L(ab) [image:]L(c) i.e. it should be grouped as ((ab)+c).

We can, of course change the order of precedence by using parentheses. For example, the language represented by the RE a(b+c) is L(a)L(b+c).

Example : The RE ab*+b is grouped as ((a(b*))+b) which describes the language L(a)(L(b))*[image:]L(b)

Example : The RE (ab)*+b represents the language (L(a)L(b))* [image:]L(b).

Example : It is easy to see that the RE (0+1)*(0+11) represents the language of all strings over {0,1} which are either ended with 0 or 11.

Example : The regular expression r =(00)*(11)*1 denotes the set of all strings with an even number of 0's followed by an odd number of 1's i.e.
[image:]

Note : The notation [image:]is used to represent the RE rr*. Similarly, [image:]represents the RE rr, [image:]denotes [image:]r, and so on.

An arbitrary string over [image:]= {0,1} is denoted as (0+1)*.

Exercise : Give a RE r over {0,1} s.t. L(r)={[image:] has at least one pair of consecutive 1's}

Solution : Every string in L(r) must contain 00 somewhere, but what comes before and what goes before is completely arbitrary. Considering these observations we can write the REs as (0+1)*11(0+1)*.

Example : Considering the above example it becomes clean that the RE (0+1)*11(0+1)*+(0+1)*00(0+1)* represents the set of string over {0,1} that contains the substring 11 or 00.

[bookmark: page44]Example : Consider the RE 0*10*10*. It is not difficult to see that this RE describes the set of strings over {0,1} that contains exactly two 1's. The presence of two 1's in the RE and any no of 0's before, between and after the 1's ensure it.

Example : Consider the language of strings over {0,1} containing two or more 1's.

Solution : There must be at least two 1's in the RE somewhere and what comes before, between, and after is completely arbitrary. Hence we can write the RE as (0+1)*1(0+1)*1(0+1)*. But following two REs also represent the same language, each ensuring presence of least two 1's somewhere in the string

i) 0*10*1(0+1)*

ii) (0+1)*10*10*

Example : Consider a RE r over {0,1} such that

L(r) = {[image:] has no pair of consecutive 1's}

Solution : Though it looks similar to ex ……., it is harder to construct to construct. We observer that, whenever

a 1 occurs, it must be immediately followed by a 0. This substring may be preceded & followed by any no of 0's. So the final RE must be a repetition of strings of the form: 00…0100….00 i.e. 0*100*. So it looks like the
RE is (0*100*)*. But in this case the strings ending in 1 or consisting of all 0's are not accounted for. Taking these observations into consideration, the final RE is r = (0*100*)(1+ [image:])+0*(1+[image:]).

Alternative Solution :
The language can be viewed as repetitions of the strings 0 and 01. Hence get the RE as r = (0+10)*(1+[image:]).This is a shorter expression but represents the same language.

Regular Expression:

FA to regular expressions:

FA to RE (REs for Regular Languages) :

Lemma : If a language is regular, then there is a RE to describe it. i.e. if L = L(M) for some DFA M, then there is a RE r such that L = L(r).

Proof : We need to construct a RE r such that [image:]. Since M is a DFA, it has a finite

no of states. Let the set of states of M is Q = {1, 2, 3,..., n} for some integer n. [Note : if the n states of M were denoted by some other symbols, we can always rename those to indicate as 1, 2, 3,..., n]. The required RE is constructed inductively.

Notations : [image:]is a RE denoting the language which is the set of all strings w such that w is the label of a
path from state i to state j [image:]in M, and that path has no intermediate state whose number is greater then k. (i & j (begining and end pts) are not considered to be "intermediate" so i and /or j can be

[bookmark: page45]greater than k)

We now construct [image:]inductively, for all i, j [image:]Q starting at k = 0 and finally reaching k = n.

Basis : k = 0, [image:]i.e. the paths must not have any intermediate state (since all states are numbered 1 or above). There are only two possible paths meeting the above condition :

1. A direct transition from state i to state j.
· [image:]= a if then is a transition from state i to state j on symbol the single symbol a.

· [image:]= [image:]if there are multiple transitions from state i to state j on symbols

[image:].
· [image:]= f if there is no transition at all from state i to state j.

2. All paths consisting of only one node i.e. when i = j. This gives the path of length 0 (i.e. the RE [image:]denoting the string [image:]) and all self loops. By simply adding Î to various cases above we get the corresponding REs i.e.
· [image:]= [image:]+ a if there is a self loop on symbol a in state i .

· [image:]= [image:]+ [image:]if there are self loops in state i as multiple symbols

[image:].
· [image:]= [image:]if there is no self loop on state i.

Induction :

Assume that there exists a path from state i to state j such that there is no intermediate state whose number is

greater than k. The corresponding Re for the label of the path is [image:].

There are only two possible cases :

1. The path dose not go through the state k at all i.e. number of all the intermediate states are less than

k. So, the label of the path from state i to state j is tha language described by the RE [image:].

2. The path goes through the state k at least once. The path may go from i to j and k may appear more than once. We can break the into pieces as shown in the figure 7.

[bookmark: page46][image:]

Figure 7

1. The first part from the state i to the state k which is the first recurence. In this path, all intermediate

states are less than k and it starts at iand ends at k. So the RE [image:]denotes the language of the label of path.
2. The last part from the last occurence of the state k in the path to state j. In this path also, no

intermediate state is numbered greater than k. Hence the RE [image:]denoting the language of the label of the path.

3. In the middle, for the first occurence of k to the last occurence of k , represents a loop which may be taken zero times, once or any no of times. And all states between two consecutive k's are numbered less than k.

Hence the label of the path of the part is denoted by the RE [image:].The label of the path from state i to state j is the concatenation of these 3 parts which is
[image:]

Since either case 1 or case 2 may happen the labels of all paths from state i to j is denoted by the following RE
[image:]

We can construct [image:]for all i, j [image:]{1,2,..., n} in increasing order of k starting with the basis k = 0 upto k = n
since [image:]depends only on expressions with a small superscript (and hence will be available). WLOG, assume

that state 1 is the start state and [image:]are the m final states where ji [image:]{1, 2, ... , n }, [image:]and

[image:]. According to the convention used, the language of the automatacan be denoted by the RE

[bookmark: page47][image:]

Since [image:]is the set of all strings that starts at start state 1 and finishes at final state [image:]following the transition of the FA with any value of the intermediate state (1, 2, ... , n) and hence accepted by the automata.

Regular Grammar:

A grammar [image:]is right-linear if each production has one of the following three forms:

· A[image:]cB ,

· A[image:]c,
· A[image:]

Where A, B [image:](with A = B allowed) and [image:]. A grammar G is left-linear if each production has once of the following three forms.

A[image:]Bc , A[image:]c, A[image:]

A right or left-linear grammar is called a regular grammar.

Regular grammar and Finite Automata are equivalent as stated in the following theorem.

Theorem : A language L is regular iff it has a regular grammar. We use the following two lemmas to prove the above theorem.

Lemma 1 : If L is a regular language, then L is generated by some right-linear grammar.

Proof : Let [image:]be a DFA that accepts L.

Let [image:]and [image:].

We construct the right-linear grammar [image:]by letting
[image:]

N = Q , [image:]and

[Note: If [image:], then [image:]]

Let [image:]. For M to accept w, there must be a sequence of states [image:]such that

[bookmark: page48][image:][image:]

and

By construction, the grammar G will have one production for each of the above transitions. Therefore, we have the corresponding derivation.
[image:]

Hence w [image:]L(g).

Conversely, if [image:], then the derivation of w in G must have the form as given above. But, then the construction of G from M implies that

[image:], where [image:], completing the proof.

Lemma 2 : Let [image:]be a right-linear grammar. Then L(G) is a regular language.

Proof: To prove it, we construct a FA M from G to accept the same language.

[image:]is constructed as follows:
[image:]

([image:]is a special sumbol not in N)
[image:]

[image:],

For any [image:]and [image:]and [image:]is defined as
[image:][image:]

if

and [image:], if [image:].

We now show that this construction works.

Let [image:]. Then there is a derivation of w in G of the form

[bookmark: page49][image:]

By contradiction of M, there must be a sequence of transitions
[image:]

implying that [image:]i.e. w is accepted by M.

Conversely, if [image:]is accepted by M, then because [image:]is the only accepting state of M, the transitions causing w to be accepted by M will be of the form given above. These transitions corresponds to a

derivationof w in the grammar G. Hence [image:], completing the proof of the lemma.

Given any left-linear grammar G with production of the form [image:], we can construct from it a right-
linear grammar [image:]by replacing every production of G of the form [image:]with [image:]

It is easy to prove that [image:]. Since [image:]is right-linear, [image:]is regular. But then so are

[image:]i.e. [image:]because regular languages are closed under reversal.

Putting the two lemmas and the discussions in the above paragraph together we get the proof of the theorem-

A language L is regular iff it has a regular grammar

Example : Consider the grammar
[image:]

It is easy to see that G generates the language denoted by the regular expression (01)*0.

The construction of lemma 2 for this grammar produces the follwoing FA.
This FA accepts exactly (01)*1.

Decisions Algorithms for CFL

In this section, we examine some questions about CFLs we can answer. A CFL may be represented using a CFG or PDA. But an algorithm that uses one representation can be made to work for the others, since we can construct one from the other.

[bookmark: page50]Testing Emptiness :

Theorem : There are algorithms to test emptiness of a CFL.

Proof : Given any CFL L, there is a CFG G to generate it. We can determine, using the construction described

in the context of elimination of useless symbols, whether the start symbol is useless. If so, then [image:]; otherwise not.

Testing Membership :

Given a CFL L and a string x, the membership, problem is to determine whether [image:]?

Given a PDA P for L, simulating the PDA on input string x doesnot quite work, because the PDA can grow its stack indefinitely on [image:]input, and the process may never terminate, even if the PDA is deterministic.

So, we assume that a CFG [image:]is given such that L = L(G).

Let us first present a simple but inefficient algorithm.

Convert G to [image:]in CNF generating [image:]. If the input string [image:], then we need to

determine whether [image:]and it can easily be done using the technique given in the context of elimination of
[image:]-production. If , [image:]then [image:]iff [image:]. Consider a derivation under a grammar in CNF. At every step, a production in CNF in used, and hence it adds exactly one terminal symbol to the sentential form.

Hence, if the length of the input string x is n, then it takes exactly n steps to derive x (provided x is in [image:]).

Let the maximum number of productions for any nonterminal in [image:]is K. So at every step in derivation, there

are atmost k choices. We may try out all these choices, systematically., to derive the string x in [image:]. Since

there are atmost [image:]i.e. [image:]choices. This algorithms is of exponential time complexity. We now present an efficient (polynomial time) membership algorithm.

Pumping Lemma:

Limitations of Finite Automata and Non regular Languages :

The class of languages recognized by FA s is strictly the regular set. There are certain languages which are non regular i.e. cannot be recognized by any FA

Consider the language [image:]

In order to accept is language, we find that, an automaton seems to need to remember when passing the center point between a's and b's how many a's it has seen so far. Because it would have to compare that with the number of b's to either accept (when the two numbers are same) or reject (when they are not same) the input string.

[bookmark: page51]But the number of a's is not limited and may be much larger than the number of states since the string may be arbitrarily long. So, the amount of information the automaton need to remember is unbounded.

A finite automaton cannot remember this with only finite memory (i.e. finite number of states). The fact that FA s have finite memory imposes some limitations on the structure of the languages recognized. Inductively, we can say that a language is regular only if in processing any string in this language, the information that has to
be remembered at any point is strictly limited. The argument given above to show that [image:]is non regular is
informal. We now present a formal method for showing that certain languages such as [image:]are non regular

Properties of CFL’s

Closure properties of CFL:

We consider some important closure properties of CFLs.

Theorem : If [image:]and [image:]are CFLs then so is [image:]

Proof : Let [image:]and [image:]be CFGs generating. Without loss of generality,

we can assume that [image:]. Let [image:]is a nonterminal not in [image:]or [image:]. We construct the grammar

[image:]from [image:]and [image:], where

[image:],
[image:][image:]

We now show that [image:]

Thus proving the theorem.

Let [image:]. Then [image:]. All productions applied in their derivation are also in [image:]. Hence [image:]i.e.
[image:]

Similarly, if [image:], then [image:]

Thus [image:].

[bookmark: page52]Conversely, let [image:]. Then [image:]and the first step in this derivation must be either [image:]or
[image:]. Considering the former case, we have [image:]

Since [image:]and [image:]are disjoint, the derivation [image:]must use the productions of [image:]only (which are also in

[image:]) Since [image:]is the start symbol of [image:]. Hence, [image:]giving [image:].

Using similar reasoning, in the latter case, we get [image:]. Thus [image:].

So, [image:], as claimed

Theorem : If [image:]and [image:]are CFLs, then so is [image:].

Proof : Let [image:]and [image:]be the CFGs generating [image:]and [image:]respectively.

Again, we assume that [image:]and [image:]are disjoint, and [image:]is a nonterminal not in [image:]or [image:]. we construct the CFG

[image:]from [image:]and [image:], where
[image:][image:][image:][image:]

We claim that

To prove it, we first assume that [image:]and [image:]. Then [image:]and [image:]. We can derive the string xy in [image:]as shown below.
[image:]

since [image:]and [image:]. Hence [image:].

[bookmark: page53]For the converse, let [image:]. Then the derivation of w in [image:]will be of the form

[image:]i.e. the first step in the derivation must see the rule [image:]. Again, since [image:]and [image:]are
disjoint and [image:]and [image:], some string x will be generated from [image:]using productions in [image:](which are

also in [image:]) and such that [image:].

Thus
Hence [image:]and [image:].

This means that w can be divided into two parts x, y such that [image:]and [image:]. Thus [image:].This completes the proof
Theorem : If L is a CFL, then so is [image:].
Proof : Let [image:]be the CFG generating L. Let us construct the CFG [image:]from G

where [image:].
We now prove that [image:], which prove the theorem.

[image:]can generate [image:]in one step by using the production [image:]since [image:], [image:]can generate any string in L.

Let [image:]for any n >1 we can write [image:]where [image:]for [image:]. w can be generated by [image:]using following steps.
[image:]

First (n-1)-steps uses the production S[image:]SS producing the sentential form of n numbers of S 's. The

nonterminal S in the i-th position then generates [image:]using production in P (which are also in [image:])

It is also easy to see that G can generate the empty string, any string in L and any string [image:]for n >1 and none other.

Hence [image:]

Theorem : CFLs are not closed under intersection

Proof : We prove it by giving a counter example. Consider the language [image:].The following CFG generates L1 and hence a CFL

[bookmark: page54][image:]

The nonterminal X generates strings of the form [image:]and C generates strings of the form [image:], [image:].

These are the only types of strings generated by X and C. Hence, S generates [image:].

Using similar reasoning, it can be shown that the following grammar [image:]and hence it is also a CFL.
[image:]

But, [image:]and is already shown to be not context-free.

Hence proof.

Theorem : A CFL's are not closed under complementations

Proof : Assume, for contradiction, that CFL's are closed under complementation. SInce, CFL's are also closed

under union, the language [image:], where [image:]and [image:]are CFL's must be CFL. But by DeMorgan's law
[image:]

This contradicts the already proved fact that CFL's are not closed under intersection.

But it can be shown that the CFL's are closed under intersection with a regular set.

Theorem : If L is a CFL and R is a regular language, then [image:]is a CFL.

Proof : Let [image:]be a PDA for L and let [image:]be a DFA for R. We construct a PDA M from P and D as follows
[image:]

where [image:]is defined as

[image:]contains [image:]iff

[bookmark: page55][image:]and [image:]contains [image:]

The idea is that M simulates the moves of P and D parallely on input w, and accepts w iff both P and D accepts. That means, we want to show that
[image:]

We apply induction on n, the number of moves, to show that

[image:]iff

[image:]and
[image:]

Basic Case is n=0. Hence [image:], [image:]and [image:]. For this case it is trivially true

Inductive hypothesis : Assume that the statement is true for n -1.

Inductive Step : Let w = xa and
[image:]

Let

By inductive hypothesis, [image:]and [image:]

From the definition of [image:]and considering the n-th move of the PDA M above, we have
[image:]

and [image:]

Hence [image:]and [image:]

If [image:]and [image:], then [image:]and we got that if M accepts w, then both P and D accepts it.

We can show that converse, in a similar way. Hence [image:]is a CFL (since it is accepted by a PDA M) This property is useful in showing that certain languages are not context-free.

Example : Consider the language
[image:]

Intersecting L with the regular set [image:], we get
[image:]

[bookmark: page56][image:]

Which is already known to be not context-free. Hence L is not context-free Theorem : CFL's are closed under reversal. That is if L is a CFL, then so is [image:]

Proof : Let the CFG [image:]generates L. We construct a CFG [image:]where

[image:]. We now show that [image:], thus proving the theorem. We need to prove that
[image:]iff [image:].
The proof is by induction on n, the number of steps taken by the derivation. We assume, for simplicity (and of

course without loss of generality), that G and hence [image:]are in CNF.
The basis is n=1 in which case it is trivial. Because [image:]must be either [image:]or BC with [image:].

Hence [image:]iff [image:]
Assume that it is true for (n-1)-steps. Let [image:]. Then the first step must apply a rule of the form [image:]and it gives

[image:]where [image:]and [image:]

By constructing of G', [image:]
Hence
[image:]

The converse case is exactly similar
Substitution :

[image:], let [image:]be a language (over any alphabet). This defines a function S, called substitution, on [image:]which is

denoted as [image:]- for all [image:]

This definition of substitution can be extended further to apply strings and langauge as well.
If [image:], where [image:], is a string in [image:], then
[image:]

.
Similarly, for any language L,
[image:]

The following theorem shows that CFLs are closed under substitution.

Thereom : Let [image:]is a CFL, and s is a substitution on [image:]such that [image:]is a CFL for all [image:], thus s(L) is a CFL

Proof : Let L = L(G) for a CFG [image:]and for every [image:], [image:]for some
[image:]. Without loss of generality, assume that the sets of nonterminals N and [image:]'s are disjoint.

[bookmark: page57]Now, we construct a grammar [image:], generating s(L), from G and [image:]'s as follows :
[image:]


[image:][image:]


[image:][image:]


[image:][image:]

· consists of

1. [image:]and

2. The production of P but with each terminal a in the right hand side of a production replaced by [image:]everywhere.
We now want to prove that this construction works i.e. [image:]iff [image:].

If Part : Let [image:]then according to the definition there is some string [image:]and [image:]for [image:]such that [image:]
We will show that [image:].

From the construction of [image:], we find that, there is a derivation [image:]corresponding to the string
[image:](since [image:]contains all productions of G but every ai replaced with [image:]in the RHS of any production).

Every [image:]is the start symbol of [image:]and all productions of [image:]are also included in [image:].

Hence
[image:]

Therefore, [image:]
[image:]
(Only-if Part) Let [image:]. Then there must be a derivative as follows :

[image:](using the production of G include in [image:]as modified by (step 2) of the construction of [image:].)

Each [image:]([image:]) can only generate a string [image:], since each [image:]'s and N are disjoin. Therefore, we get
[image:]

[image:]since [image:]

[bookmark: page58][image:]since [image:]
[image:]

The string [image:]is formed by substituting strings [image:]for each [image:]and hence [image:].

Theorem : CFL's are closed under homomorphism

Proof : Let [image:]be a CFL, and h is a homomorphism on [image:]i.e [image:]for some alphabets [image:]. consider
the following substitution S:Replace each symbol [image:]by the language consisting of the only string h(a), i.e.

[image:]for all [image:]. Then, it is clear that, h(L) = s(L). Hence, CFL's being closed under substitution must also be closed under homomorphism.

image4.jpeg

image92.jpeg
we L(G)

image93.jpeg
A—cB|c|e

image94.jpeg

image95.jpeg
A—cB

image96.jpeg
A—s Bc

image97.jpeg

image98.jpeg

image99.jpeg

image100.jpeg
L&)

image101.jpeg
G:§—04]0
A>1S

image5.jpeg

image102.jpeg

image103.jpeg
xelk

image104.jpeg

image105.jpeg
G'=(NZ, P8

image106.jpeg
L) ~(e}

image107.jpeg

image108.jpeg

image109.jpeg

image110.jpeg
xe L(G)

image111.jpeg
xe L(G)

image6.jpeg
ntry

image112.jpeg

image113.jpeg

image114.jpeg
Fdl

image115.jpeg

image116.jpeg
@b | 20

image117.jpeg
a"y?

image118.jpeg
a"y?

image119.jpeg

image120.jpeg

image121.jpeg
LlL;

image7.jpeg
nry

image122.jpeg
G =(M.Z.R.8)

image123.jpeg
Gy =(N,,5,,B,5,)

image124.jpeg
NNN,=¢

image125.jpeg

image126.jpeg

image127.jpeg

image128.jpeg
G, =(M.%.B.5)

image129.jpeg

image130.jpeg

image131.jpeg
N = MUNU(S)

image8.jpeg

image132.jpeg
5B G2

image133.jpeg
B =RUBU(S, =85}

image134.jpeg

image135.jpeg
wel,

image136.jpeg

image137.jpeg

image138.jpeg

image139.jpeg
we L(G,)

image140.jpeg
we L,

image141.jpeg
LUL cL{G)

image9.jpeg

image142.jpeg

image143.jpeg

image144.jpeg

image145.jpeg

image146.jpeg

image147.jpeg
"o %

image148.jpeg

image149.jpeg
S eN,

image150.jpeg
we L(G)

image151.jpeg
we L(G,)

image10.jpeg

image152.jpeg
L(G)cLUL,

image153.jpeg
L(G)=6LUL,

image154.jpeg

image155.jpeg

image156.jpeg

image157.jpeg

image158.jpeg

image159.jpeg

image160.jpeg

image161.jpeg

image11.jpeg

image162.jpeg
B=RURU(S, =88}

image163.jpeg
L(G)=L(G)L(Gy) = LI,

image164.jpeg
xedy

image165.jpeg
yel,

image166.jpeg

image167.jpeg
Sz?y

image168.jpeg
Sossom oy

image169.jpeg
)
n

image170.jpeg
BoP

image171.jpeg
LI, cL(G)

image12.jpeg

image172.jpeg

image173.jpeg
§— 58,

image174.jpeg
S,EN,

image175.jpeg

image176.jpeg

image177.jpeg

image178.jpeg
Sz?y

image179.jpeg
yel,

image180.jpeg
we LI,

image181.jpeg

image182.jpeg
G=(NZP5)

image183.jpeg
G'=(NIP.5)

image184.jpeg
P'=Pu{S— 55|}

image185.jpeg

image186.jpeg

image187.jpeg

image188.jpeg
we I

image189.jpeg
W= Wy W,

image190.jpeg

image191.jpeg

image192.jpeg
21 .
558582 = =
> S5 WSS S W, ¥y

image193.jpeg

image194.jpeg

image195.jpeg

image196.jpeg
we®

image197.jpeg

image198.jpeg
L ={a''e |i, j 20}

image199.jpeg
§— XC
X akb|e
C>eCle

image200.jpeg
a'B, n20

image201.jpeg

image13.jpeg
Yaes

image202.jpeg

image203.jpeg
L, ={a'%e’ |i,j 20}

image204.jpeg
S— AY
A-adle
Xobke|e

image205.jpeg
L, ={a""" |20}

image206.jpeg

image207.jpeg

image208.jpeg
INR

image209.jpeg
P=(Q,.ET.8,4,.2,.F,)

image210.jpeg
D=(Q5.%.85.45.Fp)

image211.jpeg
M =(0Q, %o E.T. 80, (4,0), 20, Fy X Fp)

image14.jpeg
ntry

image212.jpeg

image213.jpeg
8 ((p.q).0.%)

image214.jpeg
((r.).a)

image215.jpeg
85(q.a) =5

image216.jpeg
8,(p.a.X)

image217.jpeg

image218.jpeg
L(M)=L(P)NL(DY=LNR

image219.jpeg
((gy20) mz) e {(pa).e7)

image220.jpeg
(ywze) (pie7)

T

image221.jpeg
8lgpw)=q

image15.jpeg
nry

image222.jpeg

image223.jpeg

image224.jpeg

image225.jpeg
((q,,q,,),xﬂ,zn)@‘((p 7).a)%((p,q)m)

image226.jpeg
> (rea)

~lE

(a,m.20)"

image227.jpeg

image228.jpeg

image229.jpeg
8,(p"a.a)=(p.ey)

image230.jpeg
85(q".a)

g

image231.jpeg
ol

(45 70.2) 2 (' a.0)1> (p2.7)

~T1

image16.jpeg

image232.jpeg
q

image233.jpeg

image234.jpeg
gEF,

image235.jpeg
p.g€F,XFy

image236.jpeg

image237.jpeg
L :[we(a,b,c)' |w contains equal number of a's,b's and ¢]

image238.jpeg

image239.jpeg
R=a"d"c"

image240.jpeg
LaR=Lnab's
={a"c |20}

image241.jpeg

image17.jpeg

image242.jpeg
P={4>a|d—>ateP)

image243.jpeg
(@)=

image244.jpeg

image245.jpeg

image246.jpeg

image247.jpeg

image248.jpeg
B.CeN

image249.jpeg

image250.jpeg

image251.jpeg
A— BC

image18.jpeg

image252.jpeg
11
A=BCS pr-a

image253.jpeg
3= 6°

image254.jpeg

image255.jpeg
A—-CBeP'

image256.jpeg
1 Wl gy
A=CBZE

image257.jpeg
Yael

image258.jpeg

image259.jpeg

image260.jpeg

image261.jpeg
w=aa,

a,

image19.jpeg
L(7) = (L)

image262.jpeg
@G ET

image263.jpeg

image264.jpeg
s(aa,--a,)=s(a)s(a,)

s(a,)

image265.jpeg
s(L)={s(w)|we L}

image266.jpeg

image267.jpeg

image268.jpeg
G, =(N,.%,.5.5,)

image269.jpeg

image270.jpeg

image271.jpeg
G'=(N.Z,P.8)

image20.jpeg

image272.jpeg

image273.jpeg
N

Nu U ¥,
atzVa

image274.jpeg

image275.jpeg
4L

image276.jpeg

image277.jpeg

image278.jpeg

image279.jpeg

image280.jpeg
we L(G)

image281.jpeg
wes(L)

image21.jpeg

image282.jpeg
wes(L)

image283.jpeg
xr=agm,

ayel

image284.jpeg
xeS(a)

image285.jpeg

image286.jpeg
w=xx x5 (=s(a)s(a;) -5 (a,))

image287.jpeg

image288.jpeg
S22 8,5,

e Py

image289.jpeg

image290.jpeg

image291.jpeg

image22.jpeg

image292.jpeg
9255,

BN

=58, S,
AR

e

image293.jpeg

image294.jpeg
we L(G)

image295.jpeg

image296.jpeg

image297.jpeg

image298.jpeg

image299.jpeg
5,

image300.jpeg

image301.jpeg
= AmSy

5,

image23.jpeg

image302.jpeg
S,z
G,

]

image303.jpeg

image304.jpeg
w=xx

image305.jpeg

image306.jpeg

image307.jpeg
BTN

image308.jpeg

image309.jpeg

image310.jpeg

image24.jpeg

image25.jpeg

image26.jpeg

image27.jpeg

image28.jpeg
e’ |@

image29.jpeg
ae{0)) @

image30.jpeg
L(r)

w | we L(M)}

image31.jpeg

image32.jpeg

image33.jpeg

image34.jpeg

image35.jpeg
R

image36.jpeg
;a4

g

image37.jpeg

image38.jpeg

image39.jpeg
e e

image40.jpeg
a4

a,

image41.jpeg
1)

image42.jpeg
Fidet) Fen

-0

Apath from i to] that goes through k exactly once

(ran)’
e Ty e
OO OO0

Apath from i to] that goes through k more than once

image43.jpeg
Ly
e

image44.jpeg
(b1}
Ay

image45.jpeg

image46.jpeg
R (Y

image47.jpeg
@D, D
-+ (57) 3

image48.jpeg

image49.jpeg
Fishar vy

image50.jpeg

image51.jpeg

image52.jpeg
R R Y

image53.jpeg

image54.jpeg
Ji

image55.jpeg
G=(NZPFS)

image56.jpeg

image57.jpeg

image58.jpeg

image59.jpeg
cEZ

image60.jpeg

image61.jpeg
8, 4.
z,
M=(Q,

F)

image1.jpeg

image62.jpeg
e

{20, @10)

image63.jpeg
z

{a, @,

image64.jpeg
P={A—=cB | 8(4 c)=Blu{d—c | 5(4 c)e B}

image65.jpeg

image66.jpeg
BelF

image67.jpeg
B—sePl

image68.jpeg
w=aa, a, € L(M)

image69.jpeg
Jor G1s - G

image70.jpeg

image71.jpeg
HEF

image2.jpeg

image72.jpeg
Sa S @ T Ty G T G W
G O R I G R

image73.jpeg
w=aa, a, € L&)

image74.jpeg
(g0 @@ a) =4,

image75.jpeg
HEF

image76.jpeg
0=vulq,)

image77.jpeg

image78.jpeg

image79.jpeg

image80.jpeg

image81.jpeg

image3.jpeg
Yaes

image82.jpeg

image83.jpeg
d(q.a)={plg—saper}

image84.jpeg
g—agP

image85.jpeg
§(q.a)={ple—arePiufq,)

image86.jpeg
g—>a€P

image87.jpeg
w=aa, a € L(G)

image88.jpeg
S am = aag= =,
= a2 A g Ty g i

image89.jpeg

image90.jpeg
w=aa,

ay

image91.jpeg

